Additivity problems and tensor powers of quantum channels

Motohisa Fukuda

1 Introduction to additivity violation

- Set-up
- Additivity violation and its consequences
- Open problems
- 2 Understanding proofs on additivity violation
 - Intuitive explanation
 - Aubrun-Szarek-Werner approach
- 3 Tensor powers of quantum channels
 - "Best inputs" for tensor powers
 - Bounds on tensor powers of quantum channels
 - Short discussion

Set-up Additivity violation and its consequences Open problems

Quantum states and channels

- A quantum state ρ (in finite dimension) is a positive semi-definite Hermitian operator with trace one on a Hilbert space Cⁿ.
- A channel can be written as

$$\Phi(\rho) = \operatorname{Tr}_{\mathbb{C}^k} \left[V \rho V^* \right]$$

Here, $V : \mathbb{C}^{l} \to \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ is a partial isometry. This means that a channel is completely positive and trace preserving.

Set-up Additivity violation and its consequences Open problems

Complementary channels

When the input $\rho = |x\rangle\langle x|$ is a rank-one projection the following two matrices share the same non-zero eigenvalues.

$$\operatorname{Tr}_{\mathbb{C}^{k}}\left[V
ho V^{*}
ight]\sim\operatorname{Tr}_{\mathbb{C}^{n}}\left[V
ho V^{*}
ight]$$

Indeed, $V|x\rangle \in \mathbb{C}^k \otimes \mathbb{C}^n$ has the Schmidt decomposition:

$$\sum_{i}\sqrt{r_{i}}\left|u_{i}\right\rangle \otimes\left|v_{i}\right\rangle$$

where $r_i > 0$ is a probability distribution, and $\{u_i\}, \{v_i\}$ are orthonormal in \mathbb{C}^k and \mathbb{C}^n .

We define the complementary channel of Φ by ¹

$$\Phi^{c}(\rho) = \operatorname{Tr}_{\mathbb{C}^{n}}\left[V\rho V^{*}\right]$$

¹[Holevo][King, Matsumoto, Nathanson, Ruskai]

Set-up Additivity violation and its consequences Open problems

Minimum output entropy (MOE)

The minimal output entropy of channel Φ is defined by

$$S_{\min}(\Phi) = \min_{
ho} S(\Phi(
ho))$$

where ρ are input states. [King, Ruskai]

Here, the von Neumann entropy $S(\cdot)$ of quantum state ρ is:

$$S(\rho) = -\operatorname{Tr}[\rho \log \rho] = -\sum_{i=1}^{d} \lambda_i \log \lambda_i$$

where λ_i are eigenvalues of ρ . Note that

$$S(\rho \otimes \sigma) = S(\rho) + S(\sigma)$$

Set-up Additivity violation and its consequences Open problems

Holevo capacity (HC)

Holevo capacity of channel Φ is defined as:

$$\chi(\Phi) = \max_{p_i,\rho_i} \left[S(\Phi(\sum_i p_i \rho_i)) - \sum_i p_i S(\Phi(\rho_i)) \right]$$

where $\{p_i, \rho_i\}$ is an ensemble. [Holevo][Schumacher, Westmoreland]

We have an easy bound: $\chi(\Phi) \leq \log d - S_{\min}(\Phi)$

The above bound is saturated when, for example,

$$\Phi(U_g\rho U_g^*) = U_g\Phi(\rho)U_g^*$$

where $g \mapsto U_g \cdot U_g^*$ is an irreducible representation. [Holevo]

Set-up Additivity violation and its consequences Open problems

Remarks on MOE and HC

• MOE measures purity of channels by considering optimal output while HC is connected to the capacity *C*(·):

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n})$$

Without entangled inputs or if additivity of χ holds, then

$$C(\Phi) = \chi(\Phi)$$

 Since von Neumann entropy is concave, MOE is achieved by pure input states. This means,

$$S_{\min}(\Phi) = S_{\min}(\Phi^c)$$

 To calculate HC, we need to know about more than just one output state, and in general

$$\chi(\Phi) \neq \chi(\Phi^c)$$

Set-up Additivity violation and its consequences Open problems

Additivity violation

Write quantum channels:

$$\Phi(\rho) = \operatorname{Tr}_{\mathbb{C}^k} \left[V \rho V^* \right]$$

and their complex conjugate channels:

$$ar{\Phi}(
ho) = \mathsf{Tr}_{\mathbb{C}^k} \left[ar{V}
ho V^{\mathcal{T}}
ight]$$

Then, with high probability we have additivity violation 2 :

$$S_{\min}(\Phi\otimesar{\Phi}) < S_{\min}(\Phi) + S_{\min}(ar{\Phi})$$

Note that, for any channels Φ and Ω ,

$$\min_{\rho\otimes\sigma}S((\Phi\otimes\Omega)(\rho\otimes\sigma))=\min_{\rho}S(\Phi(\rho))+\min_{\sigma}S(\Omega(\sigma))$$

²[Hastings]: more precisely, another model was used.

Set-up Additivity violation and its consequences Open problems

Hastings proved:

$$S_{\min}(\Phi) + S_{\min}(ar{\Phi}) - S_{\min}(\Phi \otimes ar{\Phi}) \sim rac{\log k}{k}$$

by using a "random random unitary channel" with $1 \ll k \ll n$:

$$\Phi(\rho) = \sum_{i=1}^{k} r_i U_i \rho U_i^*$$

where

•
$$U_i \in \mathcal{U}(n)$$
 are i. i. d.
• $r_i \sim \sum_{j=2n(i-1)+2}^{2ni} X_j^2 / \sum_{j=1}^{2nk} X_i^j$
where X_i are i. i. d. normal distributions.

Set-up Additivity violation and its consequences Open problems

Entangled inputs can improve the capacity - sketchy

We know that there is a channel such that

$$S_{\min}(\Phi\otimesar{\Phi})=S_{\min}(\Phi)+S_{\min}(ar{\Phi})-\epsilon \qquad ext{where} \quad \epsilon>0$$

2 This implies 3 that $\Omega=\Phi\oplus\bar\Phi$ gives

$$S_{\min}(\Omega^{\otimes 2}) = 2S_{\min}(\Omega) - \epsilon$$

Then, there exists 4 a channel Ψ such that

$$\chi(\Psi\otimes\Psi)\geq 2\chi(\Psi)+\epsilon$$

So, we have

$$C(\Psi) = \lim_{n \to \infty} \frac{1}{2n} \cdot \chi\left(\Psi^{\otimes 2n}\right) \geq \lim_{n \to \infty} \frac{1}{2} \cdot \chi\left(\Psi^{\otimes 2}\right) = \chi(\Psi) + \frac{\epsilon}{2}$$

I.e., entangled inputs improve the classical capacity: $C(\cdot)$. ³[Fukuda, Wolf] ⁴[Shor]

Set-up Additivity violation and its consequences Open problems

Additivity question for regularized quantities

• Classical capacity:

$$C(\Phi\otimes\Omega)\stackrel{?}{=} C(\Phi) + C(\Omega) \qquad ext{ for } \Phi
eq \Omega$$

• Regularized minimum output entropy:

$$\hat{S}_{\min}(\Phi\otimes\Omega)\stackrel{?}{=}\hat{S}_{\min}(\Phi)+\hat{S}_{\min}(\Omega) \qquad ext{for }\Phi
eq\Omega$$

Here,

$$\hat{S}_{\min}(\Phi) = \lim_{N \to \infty} \frac{1}{N} \cdot S_{\min}(\Phi^{\otimes N})$$

Remark: Non-additivity of $\hat{S}_{\min}(\cdot)$ implies non-additivity of $C(\cdot)$.

Set-up Additivity violation and its consequences Open problems

Finding counterexamples

Concrete counterexamples for $1 \le p \le 2$ are still open.

Remark:

• Concrete counterexamples for the following additivity violation were found [Grudka, M. Horodecki,Pankowski]:

$$S_{
ho, \min}(\Phi \otimes \Phi) < S_{
ho, \min}(\Phi) + S_{
ho, \min}(\Phi) \qquad p>2$$

Here,

$$S_{p,\min}(\Phi) = \min_{\rho} S_{p}(\Phi(\rho))$$

where S_p is the Renyi *p*-entropy: $S_p(\sigma) = \frac{p}{1-p} \log \|\sigma\|_p$.

• Irreducible subspaces of group representations are being investigated by Brannan and Collins.

Tensor of "conjugate pair" has rather small entropy Suppose we have a quantum channel

 $\Phi(\rho) = \operatorname{Tr}_{\mathbb{C}^n} \left[V \rho V^* \right]$

where

$$V:\mathbb{C}^{\prime}\to\mathbb{C}^{n}\otimes\mathbb{C}^{k}$$

is an isometry. Then, for $|b\rangle$ a Bell state,

$$\langle b_k | \left[\Phi \otimes \bar{\Phi}(|b_l\rangle \langle b_l|) \right] | b_k \rangle \geq \frac{l}{kn}$$

This means that $\Phi \otimes \overline{\Phi}$ has an output with a large eigenvalue. Additivity violation for 1 was shown via this trick ⁵, and for <math>p = 1 later.

⁵[Hayden, Winter]

Tensor of conjugate pair - Example

The idea behind is:

$$U\otimes ar{U}\ket{b_m}=\ket{b_m}$$

for $U \in \mathcal{U}(m)$.

For example, take a random unitary channel:

$$\Psi(\rho) = \frac{1}{k} \sum_{i=1}^{k} U_i \rho U_i^*$$

so that

$$\Psi\otimesar{\Psi}(|b
angle\langle b|)=rac{1}{k}|b
angle\langle b|+rac{1}{k^2}\sum_{i
eq j}(U_i\otimesar{U}_j)\,|b
angle\langle b|\,(U_i^*\otimes U_j^{ op})$$

Single channel has rather large entropy What are typical outputs for randomly selected channels like?

$$|a\rangle\langle a|\mapsto V|a\rangle\langle a|V^*=|w\rangle\langle w|\mapsto {\sf Tr}_{\mathbb{C}^n}[|w\rangle\langle w|]=WW^*$$

- $|a\rangle$ is a fixed vector in \mathbb{C}^{\prime} .
- $V|a\rangle$ is a random vector in $\mathbb{C}^k \otimes \mathbb{C}^n$.
- WW* is the normalized Wishart matrix.

The probability density of WW^* is proportional to:

$$\delta\left(1-\sum_{1\leq i\leq k}p_i\right)\prod_{1\leq i< j\leq k}(p_i-p_j)^2\prod_{1\leq i\leq k}p_i^{n-k}$$

The last factor shows that $n \gg k$ implies concentration of eigenvalues. So, typical outputs have rather large entropy.

Aubrun-Szarek-Werner approach for p > 1

Define a random quantum channel Φ by the random isometry:

 $V:\mathbb{C}^{n^{1+1/p}}\to\mathbb{C}^n\otimes\mathbb{C}^n.$

First, $\Phi \otimes \overline{\Phi}$ has a large output eigenvalue larger than $n^{-1+1/p}$.

Second, for a fixed input ρ Typically $\|\Phi(\rho)\|_{\infty} \sim n^{-1}$ and $\mathbb{E} \|\Phi(\rho)\|_{\rho} \sim n^{-1+1/\rho}$. However, by Dvoretzky's theorem we can show that typically $\max_{\rho} \|\Phi(\rho)\|_{\rho} \sim n^{-1+1/\rho} \leq \max_{\hat{\rho}} \|\Phi \otimes \bar{\Phi}(\hat{\rho})\|_{\rho}$.

Third, this translates into, as $n \to \infty$,

$$S_{
m {\it p},min}(\Phi)\sim S_{
m {\it p},min}(\Phi\otimes ar \Phi).$$

Of course then we have violation for large n.

$$S_{
m
ho,min}(\Phi)+S_{
m
ho,min}(ar{\Phi})>S_{
m
ho,min}(\Phi\otimesar{\Phi}).$$

16/23

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

What are candidates for optimal inputs for $\Phi \otimes \overline{\Phi}$?⁶ Take a random quantum channels defined by

$$\Phi_n(\rho) = \operatorname{Tr}_{\mathbb{C}^n} \left[V \rho V^* \right]$$

with

$$V:\mathbb{C}^{\prime}\to\mathbb{C}^{kn}$$

where l = tkn, $k \in \mathbb{N}$, $t \in (0, 1)$ are fixed and $n \to \infty$.

Then, we investigated the asymptotic behavior (as $n \to \infty$) of output eigenvalues of

$$Z_n = \Phi_n \otimes \bar{\Phi}_n(|a_n\rangle\langle a_n|)$$

where $(a_n)_{n \in \mathbb{N}}$ is a fixed sequence of unit vectors.

⁶[Collins, F, Nechita]

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

We found that the empirical eigenvalue distribution of the matrix Z_n converges *almost surely*, as $n \to \infty$, to:

$$\frac{1}{k^2} \left[\delta_{\lambda_1} + (k^2 - 1) \delta_{\lambda_2} \right] dx$$

where the Dirac masses are located at

if

$$\lambda_1 = t|m|^2 + \frac{1-t|m|^2}{k^2} \quad \text{and} \qquad \lambda_2 = \frac{1-t|m|^2}{k^2}$$
$$\frac{\text{Tr}\left[A_n\right]}{\sqrt{l}} = m + O\left(\frac{1}{n^2}\right)$$

Here, $|a_n\rangle \leftrightarrow A_n$ is the correspondence $\mathbb{C}' \otimes \mathbb{C}' \leftrightarrow M_l(\mathbb{C})$.

Conclusion: The Bell state is best. Examine, for example,

$$a = \sum_{i} \alpha_{i} \ket{i} \otimes \ket{i}$$

Remark. Maximally mixed state for $\Phi \otimes \Phi$, $\Phi \otimes \Phi^T$ or $\Phi \otimes \Phi^*$.

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

How about tensor powers $(\Phi \otimes \overline{\Phi})^{\otimes r}$?⁷

Our calculation shows that tensor-products of Bell states are best. Suppose we have a random quantum channel:

$$\overset{1}{\Phi} \otimes \overset{2}{\Phi} \otimes \cdots \otimes \overset{r}{\Phi} \otimes \overset{\hat{1}}{\overline{\Phi}} \otimes \overset{\hat{2}}{\overline{\Phi}} \otimes \cdots \otimes \overset{\hat{r}}{\overline{\Phi}}$$

where best inputs are

$$|b_{\pi(1),\hat{1}}
angle\otimes|b_{\pi(2),\hat{2}}
angle\otimes\cdots\otimes|b_{\pi(r),\hat{r}}
angle$$

where $\pi \in S_r$. Here, $|b_{i,j}\rangle$ is a Bell state over the *i*-th space for Φ and *j*-th space for $\overline{\Phi}$.

Remark. Hastings conjectured that violation of additivity happens only within each conjugate pair.

⁷[F, Nechita]

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

How about tensor powers $\Phi^{\otimes 2r}$, where Φ is orthogonal ? ⁸ This time, we generate random channels by orthogonal matrices instead of unitary ones. So, $\overline{\Phi} = \Phi$.

$$\stackrel{1}{\Phi} \otimes \stackrel{2}{\Phi} \otimes \cdots \otimes \stackrel{r}{\Phi} \otimes \stackrel{r+1}{\Phi} \otimes \stackrel{r+2}{\Phi} \otimes \cdots \otimes \stackrel{2r}{\Phi}$$

where best inputs are

$$\bigotimes_{c\in\pi}\ket{b_c}$$

where π is a paring of 2r elements. Here, $|b_c\rangle$ is a Bell state over the *i*-th and *j*-th spaces when c = (i, j).

We conjecture that typically for orthogonal case

$$S_{\min}(\Phi^{\otimes 2r}) = r S_{\min}(\Phi^{\otimes 2})$$

or, we can make it weaker:

$$\lim_{r\to\infty}\frac{1}{r}S_{\min}(\Phi^{\otimes r})=\frac{1}{2}S_{\min}(\Phi^{\otimes 2})$$

⁸[F, Nechita]

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

Montanaro's multiplicative bound

$$\|\Phi^{\otimes r}\|_{1\to\infty} \leq (\|V V^*\|_{\infty})^r$$

where V is the isometry defining Φ .

F-Nechita's multiplicative bound

$$\|\Phi^{\otimes r}\|_{1\to 2} \le \left(\|C_{\Phi}^{\mathsf{\Gamma}}\|_{\infty}\right)^{r}$$

where C_{Φ}^{Γ} is the partially transposed Choi matrix of Φ .

Then the bounds lead to the following weak additivity respectively for $p = \infty, 2$: typically under random choice of channels

$$S_{p,\min}(\Phi^{\otimes r}) \geq \frac{r}{2}S_{p,\min}(\Phi)$$

Montanaro first described it as "weakly multiplicative", in terms of maximum output *p*-norms.

"Best inputs" for tensor powers Bounds on tensor powers of quantum channels Short discussion

F-Gour's multiplicative bound

For a unital quantum channel: $M_n(\mathbb{C}) \to M_k(\mathbb{C})$,

$$\|\Phi^{\otimes r}\|_{1\to 2} \leq (\gamma_{\Phi})^{r/2}$$

Here,

$$\gamma_{\Phi} = \frac{1}{k} + \left(1 - \frac{1}{n}\right) \|D_{\Phi}D_{\Phi}^*\|_{\infty}$$

where D_{Φ} is the dynamical matrix of Φ restricted on trace-less Hermitian matrices.

We also got an upper bound for the classical capacity:

$$C(\Phi) \leq \log k + \log \gamma_{\Phi}.$$

This bound is saturated by the Werner-Holevo channel.

Summary

- Additivity violation may be a special phenomena for conjugate pairs.
- Perhaps, additivity violation typically does not hold for Φ^{⊗n} when Φ is generated by unitary group.
- Otherwise, we need to know how fast non-additivity grows and how much contribution it makes for regularized quantity.

Thank you very much for your patience.