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Quantum states and channels

A quantum state ρ (in finite dimension) is a positive
semi-definite Hermitian operator with trace one on a Hilbert
space Cn.

A channel can be written as

Φ(ρ) = TrCk [V ρV ∗]

Here, V : Cl → Ck ⊗ Cn is a partial isometry. This means
that a channel is completely positive and trace preserving.
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Complementary channels
When the input ρ = |x〉〈x | is a rank-one projection the following
two matrices share the same non-zero eigenvalues.

TrCk [V ρV ∗] ∼ TrCn [V ρV ∗]

Indeed, V |x〉 ∈ Ck ⊗ Cn has the Schmidt decomposition:∑
i

√
ri |ui 〉 ⊗ |vi 〉

where ri > 0 is a probability distribution, and {ui}, {vi} are
orthonormal in Ck and Cn.

We define the complementary channel of Φ by 1

Φc(ρ) = TrCn [V ρV ∗]

1[Holevo][King, Matsumoto, Nathanson, Ruskai]
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Minimum output entropy (MOE)
The minimal output entropy of channel Φ is defined by

Smin(Φ) = min
ρ

S(Φ(ρ))

where ρ are input states. [King, Ruskai]

Here, the von Neumann entropy S(·) of quantum state ρ is:

S(ρ) = −Tr[ρ log ρ] = −
d∑

i=1

λi log λi

where λi are eigenvalues of ρ. Note that

S(ρ⊗ σ) = S(ρ) + S(σ)
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Holevo capacity (HC)
Holevo capacity of channel Φ is defined as:

χ(Φ) = max
pi ,ρi

[
S(Φ(

∑
i

piρi ))−
∑
i

piS(Φ(ρi ))

]

where {pi , ρi} is an ensemble. [Holevo][Schumacher,
Westmoreland]

We have an easy bound: χ(Φ) ≤ log d − Smin(Φ)

The above bound is saturated when, for example,

Φ(UgρU
∗
g ) = UgΦ(ρ)U∗g

where g 7→ Ug · U∗g is an irreducible representation. [Holevo]
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Remarks on MOE and HC

MOE measures purity of channels by considering optimal
output while HC is connected to the capacity C (·):

C (Φ) = lim
n→∞

1

n
χ(Φ⊗n)

Without entangled inputs or if additivity of χ holds, then

C (Φ) = χ(Φ)

Since von Neumann entropy is concave, MOE is achieved by
pure input states. This means,

Smin(Φ) = Smin(Φc)

To calculate HC, we need to know about more than just one
output state, and in general

χ(Φ) 6= χ(Φc)
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Additivity violation
Write quantum channels:

Φ(ρ) = TrCk [V ρV ∗]

and their complex conjugate channels:

Φ̄(ρ) = TrCk

[
V̄ ρV T

]
Then, with high probability we have additivity violation 2 :

Smin(Φ⊗ Φ̄) < Smin(Φ) + Smin(Φ̄)

Note that, for any channels Φ and Ω,

min
ρ⊗σ

S((Φ⊗ Ω)(ρ⊗ σ)) = min
ρ

S(Φ(ρ)) + min
σ

S(Ω(σ))

2[Hastings]: more precisely, another model was used.
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Hastings proved:

Smin(Φ) + Smin(Φ̄)− Smin(Φ⊗ Φ̄) ∼ log k

k

by using a “random random unitary channel” with 1� k � n:

Φ(ρ) =
k∑

i=1

riUiρU
∗
i

where

Ui ∈ U(n) are i. i. d.

ri ∼
2ni∑

j=2n(i−1)+2

X 2
j

/
2nk∑
j=1

X j
i

where Xi are i. i. d. normal distributions.
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Entangled inputs can improve the capacity - sketchy

1 We know that there is a channel such that

Smin(Φ⊗ Φ̄) = Smin(Φ) + Smin(Φ̄)− ε where ε > 0

2 This implies 3 that Ω = Φ⊕ Φ̄ gives

Smin(Ω⊗2) = 2Smin(Ω)− ε

Then, there exists 4 a channel Ψ such that

χ(Ψ⊗Ψ) ≥ 2χ(Ψ) + ε

3 So, we have

C (Ψ) = lim
n→∞

1

2n
· χ
(
Ψ⊗2n

)
≥ lim

n→∞

1

2
· χ
(
Ψ⊗2

)
= χ(Ψ) +

ε

2

I.e.,entangled inputs improve the classical capacity: C (·).
3[Fukuda, Wolf]
4[Shor]
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Additivity question for regularized quantities

Classical capacity:

C (Φ⊗ Ω)
?
= C (Φ) + C (Ω) for Φ 6= Ω

Regularized minimum output entropy:

Ŝmin(Φ⊗ Ω)
?
= Ŝmin(Φ) + Ŝmin(Ω) for Φ 6= Ω

Here,

Ŝmin(Φ) = lim
N→∞

1

N
· Smin(Φ⊗N)

Remark: Non-additivity of Ŝmin(·) implies non-additivity of C (·).
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Finding counterexamples
Concrete counterexamples for 1 ≤ p ≤ 2 are still open.

Remark:

Concrete counterexamples for the following additivity violation
were found [Grudka, M. Horodecki,Pankowski]:

Sp,min(Φ⊗ Φ) < Sp,min(Φ) + Sp,min(Φ) p > 2

Here,
Sp,min(Φ) = min

ρ
Sp(Φ(ρ))

where Sp is the Renyi p-entropy: Sp(σ) =
p

1− p
log ‖σ‖p.

Irreducible subspaces of group representations are being
investigated by Brannan and Collins.
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Tensor of “conjugate pair” has rather small entropy
Suppose we have a quantum channel

Φ(ρ) = TrCn [V ρV ∗]

where
V : Cl → Cn ⊗ Ck

is an isometry. Then, for |b〉 a Bell state,

〈bk |
[
Φ⊗ Φ̄(|bl〉〈bl |)

]
|bk〉 ≥

l

kn

This means that Φ⊗ Φ̄ has an output with a large eigenvalue.
Additivity violation for 1 < p ≤ ∞ was shown via this trick 5, and
for p = 1 later.

5[Hayden, Winter]
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Tensor of conjugate pair - Example

The idea behind is:
U ⊗ Ū |bm〉 = |bm〉

for U ∈ U(m).

For example, take a random unitary channel:

Ψ(ρ) =
1

k

k∑
i=1

UiρU
∗
i

so that

Ψ⊗ Ψ̄(|b〉〈b|) =
1

k
|b〉〈b|+ 1

k2

∑
i 6=j

(Ui ⊗ Ūj) |b〉〈b| (U∗i ⊗ UT
j )
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Single channel has rather large entropy
What are typical outputs for randomly selected channels like?

|a〉〈a| 7→ V |a〉〈a|V ∗ = |w〉〈w | 7→ TrCn [|w〉〈w |] = WW ∗

|a〉 is a fixed vector in Cl .

V |a〉 is a random vector in Ck ⊗ Cn.

WW ∗ is the normalized Wishart matrix.

The probability density of WW ∗ is proportional to:

δ

1−
∑

1≤i≤k
pi

 ∏
1≤i<j≤k

(pi − pj)
2
∏

1≤i≤k
pn−ki

The last factor shows that n� k implies concentration of
eigenvalues. So, typical outputs have rather large entropy.
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Aubrun-Szarek-Werner approach for p > 1
Define a random quantum channel Φ by the random isometry:

V : Cn1+1/p → Cn ⊗ Cn.

First, Φ⊗ Φ̄ has a large output eigenvalue larger than n−1+1/p.

Second, for a fixed input ρ

Typically ‖Φ(ρ)‖∞ ∼ n−1 and E ‖Φ(ρ)‖p ∼ n−1+1/p.

However, by Dvoretzky’s theorem we can show that typically

max
ρ
‖Φ(ρ)‖p ∼ n−1+1/p ≤ max

ρ̂
‖Φ⊗ Φ̄(ρ̂)‖p.

Third, this translates into, as n→∞,

Sp,min(Φ) ∼ Sp,min(Φ⊗ Φ̄).

Of course then we have violation for large n.

Sp,min(Φ) + Sp,min(Φ̄) > Sp,min(Φ⊗ Φ̄).
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What are candidates for optimal inputs for Φ⊗ Φ̄?6

Take a random quantum channels defined by

Φn(ρ) = TrCn [V ρV ∗]

with
V : Cl → Ckn

where l = tkn, k ∈ N, t ∈ (0, 1) are fixed and n→∞.

Then, we investigated the asymptotic behavior (as n→∞) of
output eigenvalues of

Zn = Φn ⊗ Φ̄n(|an〉〈an|)

where (an)n∈N is a fixed sequence of unit vectors.

6[Collins, F, Nechita]
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We found that the empirical eigenvalue distribution of the matrix
Zn converges almost surely, as n→∞, to:

1

k2

[
δλ1 + (k2 − 1)δλ2

]
dx

where the Dirac masses are located at

λ1 = t|m|2 +
1− t|m|2

k2
and λ2 =

1− t|m|2

k2
.

if
Tr [An]√

l
= m + O

(
1

n2

)
Here, |an〉 ↔ An is the correspondence Cl ⊗ Cl ↔ Ml(C).

Conclusion: The Bell state is best. Examine, for example,

a =
∑
i

αi |i〉 ⊗ |i〉

Remark. Maximally mixed state for Φ⊗ Φ, Φ⊗ ΦT or Φ⊗ Φ∗.
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How about tensor powers (Φ⊗ Φ̄)⊗r ?7

Our calculation shows that tensor-products of Bell states are best.
Suppose we have a random quantum channel:

1
Φ⊗

2
Φ⊗ · · · ⊗

r
Φ⊗

1̂

Φ⊗
2̂

Φ⊗ · · · ⊗
r̂

Φ

where best inputs are

|bπ(1),1̂〉 ⊗ |bπ(2),2̂〉 ⊗ · · · ⊗ |bπ(r),r̂ 〉

where π ∈ Sr . Here, |bi ,j〉 is a Bell state over the i-th space for Φ
and j-th space for Φ̄.

Remark. Hastings conjectured that violation of additivity happens
only within each conjugate pair.

7[F, Nechita]
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How about tensor powers Φ⊗2r , where Φ is orthogonal ? 8

This time, we generate random channels by orthogonal matrices
instead of unitary ones. So, Φ̄ = Φ.

1
Φ⊗

2
Φ⊗ · · · ⊗

r
Φ⊗

r+1
Φ ⊗

r+2
Φ ⊗ · · · ⊗

2r
Φ

where best inputs are ⊗
c∈π
|bc〉

where π is a paring of 2r elements. Here, |bc〉 is a Bell state over
the i-th and j-th spaces when c = (i , j).

We conjecture that typically for orthogonal case

Smin(Φ⊗2r ) = r Smin(Φ⊗2)

or, we can make it weaker:

lim
r→∞

1

r
Smin(Φ⊗r ) =

1

2
Smin(Φ⊗2)

8[F, Nechita] 20 / 23
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Montanaro’s multiplicative bound

‖Φ⊗r‖1→∞ ≤ (‖V V ∗‖∞)r

where V is the isometry defining Φ.

F-Nechita’s multiplicative bound

‖Φ⊗r‖1→2 ≤
(
‖CΓ

Φ‖∞
)r

where CΓ
Φ is the partially transposed Choi matrix of Φ.

Then the bounds lead to the following weak additivity respectively
for p =∞, 2: typically under random choice of channels

Sp,min(Φ⊗r ) ≥ r

2
Sp,min(Φ)

Montanaro first described it as “weakly multiplicative”, in terms of
maximum output p-norms.
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F-Gour’s multiplicative bound
For a unital quantum channel: Mn(C)→ Mk(C),

‖Φ⊗r‖1→2 ≤ (γΦ)r/2 .

Here,

γΦ =
1

k
+

(
1− 1

n

)
‖DΦD

∗
Φ‖∞

where DΦ is the dynamical matrix of Φ restricted on trace-less
Hermitian matrices.

We also got an upper bound for the classical capacity:

C (Φ) ≤ log k + log γΦ.

This bound is saturated by the Werner-Holevo channel.
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Summary

Additivity violation may be a special phenomena for conjugate
pairs.

Perhaps, additivity violation typically does not hold for Φ⊗n

when Φ is generated by unitary group.

Otherwise, we need to know how fast non-additivity grows
and how much contribution it makes for regularized quantity.

Thank you very much for your patience.
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