蔵王温泉実習と変質作用

山形大学理学部地球環境学科 中 島 和 夫 群馬県明和町役場 新 井 絢 子

1. はじめに

標高約900mに位置する蔵王温泉は古く最上高 湯とも呼ばれ、強酸性の火山性温泉として昔から 知られている。また、源泉周辺は黒色変質、珪化 変質、粘土化変質等を蒙っており、酸性温泉との 関連でどのような作用が起きているのか、非常に 興味深い。山形大学理学部地球環境学科では、源 泉に比較的簡単にアプローチできることから、以 前より源泉周辺で野外実習を行っている。ここで はその概要を紹介し、変質作用の特徴と温泉ので き方について探っていきたい。

図1 野外実習「蔵王温泉」のコースと源泉の位置 温泉は滑落崖の底部から湧出している。

まず、実習では図1のように①~③の地点を観 察する。①では酢川爆裂火口(今田ほか,1987; 東海林・田宮,1990)の崩壊壁の様子、酢川泥流 の様子と地形的な特徴を観察し(写真1、2)、 さらに地すべり対策の様子を観察する(写真3、 4)。地すべり観察地は鴫の谷地沼の横、大森ゲ レンデの下に当たり、地すべり災害とリゾート開 発の関係が懸念されている。②では二度川源泉 付近で新第三紀の堆積環境(湖沼性堆積物と火 砕流)、蔵王火山がもたらした変質作用などを観 察する。③では蔵王火山がもたらした変質作用のう ち、粘土化変質と透明石膏の採取などを行う。④で はアラレ石が産出するが(長澤ほか,1988)、植生に 覆われて観察が困難となったために行っていない。

写真1 樹氷橋付近から瀧山方向を望む(図1①)

写真2 樹氷橋から蔵王温泉川を望む 酢川爆裂火口の崩壊壁と流れ山が観察される

写真3 地すべり対策で掘られた集水井を観察 鴫の谷地沼の横、大森ゲレンデの下に当たり、地す べり災害とリゾート開発の関係が懸念されている。

蔵王温泉は、酸性、塩化物、硫酸塩温泉に属し た典型的な火山性温泉として知られており、総湧 出量が約8,800ℓ/分と県内最大である(東海林・ 田宮,1990)。温泉は酢川爆裂火口内の火口底にあ たる部分に湧出しており(図1,図2)、北から 旧温泉街温泉群、一度川源泉群、二度川温泉群、 三度川温泉群と呼ばれる4源泉群がある。爆裂火 口内は、珪化帯、粘土化帯、黒色変質化帯などの 変質を被っており、鳥兜変質帯と呼ばれている (地質調査所,1976)。酸性泉の湧出メカニズム は、マグマ発散物である高温の二酸化イオウや硫 化水素を含む火山ガスに、溶存酸素に富む火山噴 出物中の地下水が反応し硫酸酸性になって湧出し たものと推定されている(田宮・久間木,1985)。

写真4 樹氷橋に作られた長さ調節用の鉄板 地すべりにより右側から押されたときに鉄板を外し て調節する。

蔵王温泉地域には北から、瀧山変質帯、鳥兜変 質帯、酢川変質帯、祓川変質帯、蔵王沢変質帯、 地蔵(熊野)変質帯がほぼ南北に分布しており(図 3)、地質構造との関連を示唆している(地質調 査所,1989)。温泉が湧出している黄鉄鉱化帯は 一度川から三度川にかけて標高950~1,000m付近 にある。なお、硫酸酸性の強い温泉水は流下して もなお周囲の岩石に変質を与えており、樹氷橋下 流域では透明石膏ができる変質を生じている(図 1③;長澤・大場,1989)。これらの変質帯につ いて、地熱資源としての地化学調査や物理探査は 行われてきたが(地質調査所,1976、1989)、変 質帯における詳しい鉱物組み合わせやそれをもた らした成因などの研究は行われていない。中島・ 新井(2011)では、蔵王温泉二度川源泉群を詳細 に観察し、変質作用の性質を明らかにすることに よって蔵王温泉の成因について言及した。ここで は、その成果を抜粋しながら写真とともに全体像 を探ってみたい。

図2 蔵王温泉地域の地質図(今田ほか,1987に着色)と断面の概念図

図3 蔵王地域における変質帯の分布(地質調査所, 1989)

2. 地質概要と露頭観察

蔵王温泉周辺は先第三紀の花崗岩類を基盤とし て堆積した新第三紀中新世の緑色凝灰岩類(グ リーンタフ)が分布している(図2)。調査地 域のグリーンタフは、成沢凝灰岩部層(吉田, 1985)とされ、成沢凝灰岩部層は模式地である山 形市成沢付近では灰色ないし暗灰色および淡緑色 の凝灰岩ないし凝灰角礫岩からなり、一部は礫質

写真5 源泉付近で概要の説明

砂岩および軽石凝灰岩であるとされる(吉田, 1985)。

二度川源泉に向かって谷を入るとまもなく源泉 の採取場所に到着する(写真5)。この付近では 変質が強く、岩盤に発達したシリカ脈(写真6, 7)や岩石が酸化溶脱していく様子(写真8)を 観察することができる。

写真6 露頭③の様子(源泉の横)

写真7 露頭③ 白い細脈(シリカ脈)が発達している

この付近は変質によって、初生的な岩石構造を 残さないところもあるが、角礫組織を残した凝灰 岩もある。また、二度川中腹部の大きな露頭(図 4④)では植物化石を含む泥岩泥質岩が見られる ので、湖成層であることがわかる。さらに、泥岩 層の間には層理の乱れた軽石質凝灰岩があり、そ の中に炭化した木片が多く含まれていることから

写真8 露頭③で、変質岩の酸化溶脱の様子がわかる。右に行くほど溶脱が進む。

(写真9~14)、火砕流などの高温の火山噴出物 が山体斜面を流れ下り、植物を巻き込みながら湖 に到達して堆積したとみられる。

さらに上流へ行くと、同様に変質帯が広がって いる(写真15,16)。すべて新第三紀の凝灰岩類 が熱水変質により、黄鉄鉱化と珪化作用を受けて いる。

図4 二度川源泉付近のルートマップ

写真9 露頭④の様子 下に凝灰岩層があり、上に泥岩層が乗っている。

写真10 露頭④ 新第三紀の露頭 湖の堆積物(黒色)に凝灰岩(白色)が火砕流となっ て流れ込んでいる

写真11 上の泥岩層を望む 最上位の泥岩層はほぼ水平に堆積しており、静かな 環境で堆積したものと思われる。

写真12 凝灰岩層の中には小さな木炭片が多く見られる

写真13 時にはこのような大きな木炭片も見つかる

写真14 上の泥岩層中には葉の化石があり、湖の堆 積物であることが分かる。

写真15 上流の源泉から露頭⑤と⑥を概観する。

写真16 露頭⑥のクローズアップ パミスなどが白く斑状に変質している。

写真17 源泉横の露頭における変質の様子

写真18 源泉を覆う石垣に付着している硫酸塩鉱物

3. 熱水変質

源泉横の露頭(図4③,写真17)では、熱水変 質の順番や様子がよく分かる。岩盤の内部では黒 色になっていることが多い。これは微細な黄鉄鉱 が生じているためで、蔵王火山の火山性ガスによ り新第三紀の凝灰岩類が変質(黄鉄鉱化)したも のであろう。露頭サンプルをXRD(粉末回折X 線)やEPMA(電子線マイクロプローブ)で観 察した結果、さらに、シリカの白脈、褐色部分の シリカ+アルミナ変質と赤茶色の酸化鉄の変質が 見られる。岩体内部の黄鉄鉱化変質は恐らく酢川 爆裂火口ができたときの酸性ガスの影響であり、 それ以外の白脈や褐色部分は地表付近に露出して 酸性の温泉や大気に触れて生じたものと思われる ので、それぞれを区別して議論する。

(1) 第1段階の変質作用(火山性ガスにより、黒 色変質部の形成)

露頭の内部で観察される黒色変質部を形成した 作用である。露頭表面が白色〜褐色であっても 内部には黒色部が観察されることが多い(写真 17)。ほかに、白色シリカが不規則に散在した斑 状、鉱染組織(写真16)とよばれるものもこの変 質作用に含まれる。

(2) 第2段階の変質作用(地表付近で酸化・酸性 化により褐色~白色変質皮殻の形成)

源泉の露頭付近では、凝灰岩の大部分が褐色~ 白色に変質しているが内部では黒色部も見られ る。このことから、酸化的かつ酸性の温泉水ない し地下水によって、黒色変質岩が二次的に酸化・ 溶脱されてできたものと予想される。褐色部がよ り内側に、白色部が表面に分布していることから

(図5)、白色部は褐色部よりもさらに変質が進 んだものといえる。

4. EPMAによる観察

変質岩の断面をEPMAにより元素濃度マッピ ングを行ったところ、図5、6のような結果と なった。黒色部の中でFeとSが同じところで高濃 度を示す部分は黄鉄鉱であり(図5,FeとS)、 褐色部でFeだけ高濃度部は酸化鉄(XRDではほ とんど検出されないので、非晶質の酸化・水酸化 鉄であると考えられる)である。マッピングの下 部でFeとSが共に無くなっている部分は白色部 に相当しており、この部分では第2段階の変質作 用によりFeとS元素の溶脱が生じていると考え られる。

その他の元素で見れば(図6)、Siは黒色部と 褐色部の境界部分、あるいは白色部に多くなって いる。褐色部分では酸化鉄が多いため、相対的に Siが少なくなっているものと解釈できる。Alは黒 色部と褐色部の境界部付近のやや黒色部側に多く なっている。Tiは内部、外部共にそれほど変化が ない。これはすでに酸化チタン(ルチルなど)と して黒色部の変質段階で生じたものが、酸化変質 ではほとんど分解・移動しないために留まってい るのであろう。

Ca、Mg、Naは黒色部にわずか認められるが、 褐色部~白色部ではほとんど無くなっている。す なわち、これらの元素は第1段階の変質作用で大 部分が溶解し、第2段階においてもさらに溶出し たと思われる。このように溶け出した元素成分 は、温泉水や酢川河川水に流出し、さらには地下 水として周辺地層中に染み渡っていく。

以上から、二度川における変質作用では、アル カリ元素・アルカリ土類元素の大部分の溶脱及び 黄鉄鉱の形成(第1段階の変質作用)やFeとS 元素の溶脱(第2段階の変質作用)が生じている ことが分かる。

図5 変質岩断面のEPMAによる元素濃度マッピング

図7 蔵王火山と温泉形成のモデル図 上:約100万年前に蔵王火山の活動が始まり、火山 性ガスにより岩石が変質した(黄鉄鉱化;第1段階 の変質)。下:約5万年前に大きな火山性爆発によっ て生じた爆裂火口が大気や雨水に触れることにより 酸化変質が進んで蔵王温泉を生んだ。

図6 変質岩断面のEPMAによる元素濃度マッピン グ(つづき)

5. 変質作用と温泉の形成

露頭観察により、二度川の変質は大きく2段階 にわたって起きていたことが分かった。第1段階 の変質は地下において、緑色であったグリーンタ フが黄鉄鉱を形成し、黒色化になる変質である。 これは蔵王火山の形成によって、約100万年以降 に酸性の火山ガスが噴出したことに関連する(図 7)。続いて第2段階は、酢川爆裂火口ができた 後、地表へ露出してから黄鉄鉱を構成している元 素も溶脱し、白色化する変質である。これが生じ た時期は約5万年前とされる(阿子島・山野井、 1985)。

第1段階の変質作用

第1段階の変質作用により、新第三紀火山岩中 の磁鉄鉱などが黄鉄鉱へ変質した。第1段階の変 質作用が生じた環境はS-H-O系のpH-Eh図(図8 B)で照らし合わせると、ちょうどH₂Sの優勢領域 であることから、この変質作用には蔵王火山に含 まれるH₂Sガスの影響を強く受けたと考えられる。 この変質作用は、例えば次のように表すことが できる。

$Fe_3O_4 + 6H_2S$	$\rightarrow 3 \text{FeS}_2 + 4 \text{H}_2$	$O + 4H^{+} + 4e$	
〔磁鉄鉱〕	〔黄鉄鉱〕	<64kcal>	(1)

すなわち、グリーンタフに火山ガス中のH₂Sが 加わると(1)式は右に進み、黄鉄鉱ができると共に pHが下がる(H⁺イオンが多くなる)。このとき、 グリーンタフ中の長石・沸石・シリカらの構成元 素であるアルカリ・アルカリ土類元素の多くも溶 脱が生じたのであろう。なお、反応式の後ろにあ る<64 kcal/mol>とは、この反応が左から右へ進 んだ場合、64kcalの発熱反応であることを示す。

(2) 第2段階の変質作用

さらに、地表付近に露出したあと、温泉水など の酸性水による影響をうけ、地下において形成さ れた黄鉄鉱を構成していたFeとS元素も溶脱し ていき、全体的に白色化し、脆弱な岩石になる第 2段階の変質作用が生じた。

第2段階の変質作用では、 第1段階の変質作用が生じた 環境下から、さらに酸化的・ 酸性的環境下へ変化し、黄鉄 鉱が分解してFeがイオンと なって溶脱したと考えられ る。大気の影響で酸化され、 Feがイオンとして存在する 図8の「第2段階」の領域へ 環境が移行したことにより、 変質が生じたと考えられる (図8Fe²⁺またはHm)。

第2段階の変質作用が生じ た環境下において優勢なS種 はHSO₄⁻あるいはSO₄²⁻であ ることから、この変質作用に は二度川源泉群における泉質 に大きな影響を与えていると 考えられる。このときには次 のような反応が起こったので あろう。 FeS₂ + H₂O + 7/2O₂ → Fe²⁺ + 2HSO₄⁻ <266kcal> (2) FeS₂ + 3/2H₂O + 19/4O₂ → Fe(OH)₃ + 2SO₄²⁻ + 4e [水酸化第二鉄 (赤さび)] <426kcal> (3)

蔵王温泉の成分として、HSO₄⁻とSO₄⁻が多量 に含まれており(HSO₄⁻:1,282mg/kg;SO₄⁻: 1,189mg/kg;東海林・田宮,1990)、上記の考察 と調和的である。すなわち、地下で黄鉄鉱の酸化 分解によって生じた酸性流体によって変質作用 (白色化、褐色化)が起こり、かつ源泉の成分を 規定していると考えられる。なお、反応(2)(3)は全 て発熱反応である。

もちろん、地下深部からの火山性のガスの硫化 水素が酸化されると次のようになる。

 $H_2S + 2O_2 \rightarrow 2H^+ + SO_4^{2-} <126kcal> (4)$

これも発熱反応である。

図8 Fe-S-O-H系の安定関係(Brookins, 1988原図) 第1段階の変質で黄鉄鉱の黒色変質部が第2段階で溶脱(Fe²⁺)または酸化鉄 (Hm, 赤鉄鉱)となって沈殿する。そのときにHSO4^{-や}SO4²⁻イオンが安定で あることが分かる。

6. 天然の実験室としての蔵王温泉

なお、この実習では蔵王火山や蔵王温泉にまつ わるさまざまな地質や変質とともに、いろいろな イオウ種を観察する。二度川源泉では、岩盤内部 に発達した黄鉄鉱(FeS₂)、自然イオウ(S)、源 泉の採取小屋の石垣に見られた鉄明礬など(硫酸 塩鉱物;写真18)、源泉に塩化バリウムを滴下し て硫酸バリウムの白濁が生じる硫酸イオン(SO₄²)、 それから目で見ることはできないが臭いで感じる 硫化水素(H₂S)や二酸化イオウ(SO₂)である。 それから図1ポイント③の透明石膏の露頭ではも ちろん透明石膏($CaSO_4 \cdot 2H_2O$)を観察する。 これらのさまざまなイオウ種を価数の順に並べて みると図9のようになる。最も還元的なのは硫化 水素で、火山体深部から大気の影響が少ない中で 噴出していると思われる。またその影響で生じた 黄鉄鉱も還元的なイオウを持っている。これらが 酸化的な地表水や大気に触れて、さまざまなイオ ウ種に形を変えて沈殿している。このように蔵王 温泉周辺ではイオウ種の変化を見るだけでも火山 作用、変質作用を探ることができ、天然の実験室 としても面白い教材を提供している。

イオウ化合物	イオウの価数	
透明石膏(CaSO ₄ ·2H ₂ O)	+6	酸化的
鉄明礬石(KFe3(SO4)2(OH)6)	+6	
硫酸イオン(SO4 ²⁻)	+6	
二酸化イオウ(SO2)	+4	
自然イオウ(S)	0	
黄鉄鉱(FeS ₂)	-1	-
硫化水素(H ₂ S)	-2	還元的

図9 蔵王温泉周辺で見られるイオウ種

7. おわりに

上記のように、地下内部で起きている黄鉄鉱を 形成する第1段階の変質作用(反応(1))、地表付 近で起きている第2段階の変質作用(反応(2)(3)) の全ての反応で発熱反応であることが分かる。 黄鉄鉱の分子量は約120g/molであり、比重が約5.0g/ cm^{*}であるから、約24cm^{*}(一辺が2.9cmのサイコロ 大)の黄鉄鉱が酸化されると、反応(3)の場合は 426kcalの熱が発生する。これは、ご飯では約250 g、食パンでは約160g、カップ麺約100gに相当 する。20℃の水1リットルを蔵王温泉の平均的な 湯温である50℃に加熱するためには30kcal必要な ので、例えば反応(3)の場合は8.5gの黄鉄鉱(お よそ1.2cmのサイコロに相当)が酸化分解すると 発生する熱量に等しい。もちろん黄鉄鉱ができて それがさらに酸化分解されるだけではなく、火山 ガス中のH₂Sが直接酸化されて硫酸イオンになる だけでも発熱される(反応4)。このような化学 反応が複雑に絡み合って、蔵王温泉の熱を発生さ せていると考えられる。

なお、湯量が多いことについては、爆裂火口内 の低地からお湯が出ていることを考慮すると、山 体崩壊に伴って大きな窪地ができているのでその 部分の水頭圧が低く、地下水が集中して流れ込ん でいると推定できる。地下水はカルデラ内に降っ た雨だけではなく、地蔵岳〜熊野岳の尾根近くに 降った雨も引き寄せることになり、大量の地下水 は爆裂火口内に集中することが可能であろう。地 下水がゆっくりと変質帯の内部を流れるときに硫 化水素や黄鉄鉱を酸化させ、たっぷりのSO4²成 分を含んだ酸性温泉に変化して湧出すると想像し ている。

なお、近隣諸県で大きな地震が起きたり、大雨 で源泉周辺の土砂が崩れたりした後には源泉の湯 温が上昇すると聞いた。これは地震によって変質 帯内部に亀裂が入ったり、新たな黄鉄鉱を含んだ 露頭が露出することによって酸化反応が進んで湯 温が上昇すると考えて矛盾がない。

引用文献

- 阿子島功・山野井徹(1985)蔵王火山西麓の酢川泥流の発生年代.東北地理,37,159-165.
- Brookins, D. G. (1988) Eh-pH Diagrams for Geochemistry, Springer-Verlag, 17, 81, 176p.
- 地質調查所 (1976) 全国地熱基礎調查報告書, No. 24蔵王, 180 p.
- 地質調査所(1989)日本の主要地熱地域の地質と 温泉・変質帯分布.地調報告、第270号、253-

267.

- 今田 正・大場与志男・土肥浩巳・玉井ます美
 (1987)山形市東部、竜山火山の地質と岩石.
 岩石鉱物鉱床学会誌, 82, 345-351.
- 長澤一雄・大場与志男(1989)蔵王温泉酢川変質 帯から産出した透明石膏,山形県立博物館研究 報告,10,43-45.
- 長澤一雄・大場与志男・加藤 啓(1988) 竜山火 山の火砕岩からのアラゴナイトの産出。山形県 立博物館研究報告, 第9号, 61-65.
- 中島和夫・新井絢子(2011)蔵王温泉二度川源泉 群における変質作用.山形応用地質、第31号、 63-68.
- 田宮良一・久間木国男(1985)蔵王火山周辺の温 泉.山形県総合学術調査会報告書.蔵王連峰.
- 東海林辰雄・田宮良一(1990)温泉今昔物語,地
 熱エネルギー, Vol. 15, No. 3, 241-248.
 吉田三郎(1985)5万分の1地質図幅説明書.
- 山形-川崎,2-4.